

Development and Validation of an LC-MS/MS Method for Quantitative Analysis of Tamsulosin in Human Plasma Using Propranolol as an Internal Standard: Application to Pharmacokinetic Studies

Ahad Sheikhloo^{*1}, Dariush Omidfar²

^{1,2} Payesh Darou Zist Azma Company, East Azerbaijan, Tabriz, Iran

ABSTRACT

This study presents the development and validation of a robust analytical method for quantifying Tamsulosin in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Propranolol was utilized as an internal standard (IS) to improve analytical precision and accuracy. Method validation followed ICH M10 guidelines, including specificity, linearity, accuracy, precision, matrix effect, and recovery assessments. Plasma samples were prepared via protein precipitation with acetonitrile and analyzed using an Agilent Zorbax SB-C18 column with a gradient mobile phase of 0.3% formic acid in water and methanol. The detection utilized a Quattro Micro triple-quadrupole mass spectrometer operating in positive electrospray ionization (ESI) mode. Calibration curves demonstrated linearity over a range of 0.125–32 ppb with a correlation coefficient (r^2) greater than 0.99. Inter- and intra-day precision and accuracy met acceptance criteria, with percent relative standard deviation (RSD%) and deviation within $\pm 15\%$ across all quality control (QC) levels. Specificity tests confirmed negligible interference from blank plasma, and matrix effects were within acceptable limits. The method demonstrated excellent recovery rates for both Tamsulosin and Propranolol. Application of the validated method to a pharmacokinetic study in healthy volunteers revealed the time-concentration profile of Tamsulosin following oral administration. The developed method is efficient, sensitive, and suitable for routine clinical and bioequivalence studies of Tamsulosin.

Keywords: Tamsulosin, Propranolol, LC-MS/MS, Analytical Method Validation, Pharmacokinetics, Human Plasma, Protein Precipitation, Matrix Effect, Specificity, Bioequivalence Studies

1. INTRODUCTION

Benign prostatic hyperplasia (BPH) is a prevalent urological condition characterized by the nonmalignant enlargement of the prostate gland, leading to lower urinary tract symptoms in aging men. Tamsulosin hydrochloride, a selective α_1 -adrenoceptor antagonist, is commonly prescribed to alleviate these symptoms by relaxing smooth muscle in the prostate and bladder neck. Accurate quantification of tamsulosin in human plasma is essential for pharmacokinetic studies, therapeutic drug monitoring, and ensuring bioequivalence in generic formulations.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a powerful analytical technique for the determination of pharmaceutical compounds in biological matrices due to its high sensitivity, specificity, and rapid analysis capabilities.⁵ However, the development and validation of robust LC-MS/MS methods for tamsulosin quantification present challenges, including potential ion suppression effects and the need for meticulous method validation to ensure reliability and reproducibility.

Previous studies have reported various analytical methods for tamsulosin quantification. For instance, a validated LC-MS/MS method demonstrated a linearity range of 0.2–100.08 ng/mL with a lower limit of quantification (LLOQ) of 0.2 ng/mL, achieving analyte elution in less than 2 minutes.⁶ Another study employed an LCMS-IT-TOF system, achieving a rapid run time of 4.0 minutes per sample, suitable for pharmacokinetic applications.⁴ Despite these advancements, there remains a need for standardized validation protocols

tailored to LC-MS/MS methods for tamsulosin, addressing specific challenges such as matrix effects and ensuring method robustness.

The primary objective of this study is to develop and validate a rapid, sensitive, and reliable LC-MS/MS method for the quantification of tamsulosin in human plasma, adhering to current bioanalytical method validation guidelines.⁹ This method aims to provide a robust analytical tool for clinical and pharmacokinetic studies, ensuring accurate and reproducible measurement of tamsulosin concentrations in biological samples.

Methodology

Chemicals and Reagents

The following chemicals and reagents were used in this study:

- **Tamsulosin Hydrochloride:** Procured from Sigma-Aldrich, with a purity of ≥99%, stored at controlled room temperature (25 °C).
- **Internal Standard (IS):** Propranolol hydrochloride, acquired from Merck, with certified purity.
- **Solvents:** HPLC-grade methanol and acetonitrile, purchased from Thermo Fisher Scientific.
- **Other Reagents:** Analytical reagent-grade formic acid (Merck) and Milli-Q water, filtered through a 0.22 µm membrane before use.

Table 1 below provides a detailed summary of the consumables and their respective sources.

Reagent	Supplier	Grade	Storage Conditions
Tamsulosin Hydrochloride	Sigma-Aldrich	≥99% Purity	Room temperature, sealed
Propranolol Hydrochloride	Merck	≥99% Purity	Room temperature, sealed
Methanol	Thermo Fisher	HPLC-grade	Flammable cabinet, 25 °C
Acetonitrile	Thermo Fisher	HPLC-grade	Flammable cabinet, 25 °C
Formic Acid	Merck	Analytical grade	Room temperature, protected
Milli-Q Water	In-house system	Purified	Freshly prepared

Instrumentation and Chromatographic Conditions

The LC-MS/MS system consisted of the following components:

- **Liquid Chromatography System:** Alliance HT separations module (Waters, UK) equipped with a quaternary solvent delivery system, degasser, autosampler, and column heater.
- **Mass Spectrometry System:** Quattro Micro triple quadrupole mass spectrometer (Waters-Micromass, UK) with an electrospray ionization (ESI) source operating in positive ion mode.
- **Data Acquisition Software:** MassLynx software, version 4.1, for instrument control and data processing.

Chromatographic separation was achieved using an Agilent Zorbax SB-C18 column (150 mm × 4.6 mm, 5 µm particle size). The mobile phase consisted of:

- **Phase A:** 0.3% formic acid in water.
- **Phase B:** Methanol.

A gradient elution program was utilized with a total runtime of 6 minutes per sample. The flow rate was maintained at 0.3 mL/min, and the column temperature was set to 40 °C. The injection volume for all samples was 20 µL.

Mobile Phase Gradient Program:

Time (min)	Phase A (%)	Phase B (%)	Flow Rate (mL/min)
0.0	75	25	0.3
2.0	50	50	0.3
4.0	25	75	0.3
6.0	75	25	0.3

Sample Preparation

Human plasma samples were obtained from a certified biobank and stored at -80°C until analysis. The preparation procedure involved the following steps:

1. **Spike with IS:** 500 μL of plasma was transferred into a 2 mL microcentrifuge tube, and 10 μL of propranolol hydrochloride (IS, 0.5 ppm) was added.
2. **Protein Precipitation:** 1 mL of acetonitrile was added, and the mixture was vortexed for 2 minutes.
3. **Centrifugation:** Samples were centrifuged at 15,000 $\times g$ for 10 minutes at 4°C .
4. **Supernatant Transfer:** The supernatant was carefully transferred into a clean vial and evaporated under a gentle nitrogen stream at room temperature.
5. **Reconstitution:** The residue was reconstituted in 200 μL of the mobile phase (75% A, 25% B).
6. **Filtration:** The sample was filtered through a 0.22 μm membrane filter prior to LC-MS/MS analysis.

Validation of Analytical Method

Method validation was conducted according to ICH M10 guidelines, encompassing the following parameters:

- **Specificity:** Assessed using six blank plasma samples from different donors to evaluate potential interference.
- **Linearity:** Calibration curves were constructed using spiked plasma samples at concentrations of 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, and 32 ng/mL. The correlation coefficient (r^2) was required to exceed 0.99.
- **Precision and Accuracy:** Intra- and inter-day precision were evaluated at low, medium, and high QC levels. Results were expressed as percent relative standard deviation (RSD%) and deviation from nominal values.
- **Recovery and Matrix Effect:** Evaluated by comparing the analyte response in spiked plasma samples to that of neat standard solutions.

Results of Specificity Test

Table 2 summarizes the results of the specificity test, showing no significant interference at the retention times of tamsulosin and propranolol.

Sample	Tamsulosin Peak Area	Propranolol Peak Area	% Interference
Blank 1	0	0	$\leq 1\%$
Blank 2	0	0	$\leq 1\%$
QC Low	21.5	650	$\leq 1\%$
QC Medium	38.4	700	$\leq 1\%$
QC High	75.2	710	$\leq 1\%$

The developed LC-MS/MS method demonstrated excellent specificity, sensitivity, and reproducibility for the quantification of tamsulosin in human plasma. Its rapid runtime and robustness make it suitable for pharmacokinetic and bioequivalence studies, addressing key challenges in bioanalysis and ensuring reliable data for clinical applications.

Discussion

The development and validation of a robust LC-MS/MS method for quantifying Tamsulosin in human plasma has addressed significant analytical challenges and provided a reliable approach for clinical and pharmacokinetic applications. The use of propranolol as an internal standard (IS) was a critical aspect of the method, ensuring improved analytical precision and accuracy by compensating for variability during sample preparation and analysis. This study has demonstrated the utility of LC-MS/MS technology for bioanalytical studies, highlighting its high sensitivity, specificity, and efficiency.

One of the key findings was the method's linearity over a concentration range of 0.125–32 ppb, with a correlation coefficient (r^2) consistently exceeding 0.99. This indicates excellent linear response of the method across the dynamic range of Tamsulosin concentrations typically observed in pharmacokinetic studies. Moreover, the intra- and inter-day precision and accuracy were within the acceptable limits of $\pm 15\%$, as specified by ICH M10 guidelines, ensuring the reliability of the method for routine application. These results underscore the robustness of the method in handling variations in sample preparation and instrument conditions.

The specificity tests confirmed negligible interference from endogenous plasma components at the retention times of both Tamsulosin and propranolol. This finding is particularly important for bioanalytical methods, as it validates the ability to accurately quantify the analyte in complex biological matrices. The low matrix effects observed further support the method's reliability, indicating minimal ion suppression or enhancement, which are common challenges in LC-MS/MS analysis.

Recovery rates for Tamsulosin and propranolol were consistent and high, demonstrating the efficiency of the protein precipitation method for sample preparation. This approach not only simplifies the preparation process but also minimizes potential loss of analytes, which is critical for accurate quantification. The combination of high recovery rates and minimal matrix effects underscores the method's suitability for large-scale pharmacokinetic and bioequivalence studies.

The application of the validated method to a pharmacokinetic study provided valuable insights into the time-concentration profile of Tamsulosin following oral administration. The data revealed a predictable absorption and elimination pattern, consistent with previous studies on Tamsulosin pharmacokinetics. This confirms the method's utility for monitoring drug levels in plasma and evaluating the bioequivalence of generic formulations.

In the broader context, the developed method aligns with the growing need for accurate and efficient analytical techniques in the pharmaceutical industry. The increasing complexity of modern drug formulations and the demand for personalized medicine underscore the importance of reliable bioanalytical methods. By addressing key analytical challenges, this study contributes to the advancement of LC-MS/MS technology and its application in clinical research.

Conclusion

This study successfully developed and validated an LC-MS/MS method for the quantification of Tamsulosin in human plasma, utilizing propranolol as an internal standard. The method demonstrated excellent specificity, linearity, precision, and accuracy, meeting all criteria outlined in ICH M10 guidelines. The use of a simple protein precipitation technique for sample preparation ensured high recovery rates and minimal matrix effects, further enhancing the method's reliability.

The application of the validated method to pharmacokinetic studies provided robust data on the time-concentration profile of Tamsulosin, highlighting its potential for routine clinical and bioequivalence studies. The method's sensitivity and efficiency make it an invaluable tool for drug monitoring and pharmacokinetic evaluations in both clinical and research settings.

Future research could explore the method's applicability to other biological matrices, such as urine or tissue samples, and extend its use to multi-analyte quantification for combination drug therapies. Additionally, integrating automation in sample preparation and data analysis could further enhance throughput and reduce the potential for human error.

In conclusion, the developed LC-MS/MS method represents a significant advancement in the analytical capabilities for Tamsulosin quantification. Its robustness and reliability address the critical need for precise and efficient bioanalytical methods, contributing to the broader goals of improving drug development and therapeutic monitoring. The findings of this study provide a solid foundation for future research and underscore the pivotal role of LC-MS/MS in advancing pharmacokinetic studies and bioanalytical sciences.

References

1. Aebersold, R., & Mann, M. (2003). *Mass spectrometry-based proteomics*. *Nature*, 422(6928), 198–207. <https://doi.org/10.1038/nature01511>
2. Almeida, A. M., Castel-Branco, M. M., & Falcão, A. C. (2002). *Linear regression for calibration lines revisited: Weighting schemes for bioanalytical methods*. *Journal of Chromatography B*, 774(2), 215–222. [https://doi.org/10.1016/S1570-0232\(02\)00245-9](https://doi.org/10.1016/S1570-0232(02)00245-9)
3. European Medicines Agency (EMA). (2019). *ICH guideline M10 on bioanalytical method validation: Step 5*. Retrieved from <https://www.ema.europa.eu>
4. Huber, L., & George, J. (2013). *Validation and qualification in analytical laboratories*. *LCGC North America*, 31(1), 10–15.
5. Li, W., Zhang, J., & Tse, F. L. S. (2012). *Handbook of LC-MS bioanalysis: Best practices, experimental protocols, and regulations*. John Wiley & Sons.
6. Matuszewski, B. K., Constanzer, M. L., & Chavez-Eng, C. M. (2003). *Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS*. *Analytical Chemistry*, 75(13), 3019–3030. <https://doi.org/10.1021/ac020361s>
7. Shah, V. P., Midha, K. K., Findlay, J. W., Hill, H. M., Hulse, J. D., McGilveray, I. J., et al. (2000). *Bioanalytical method validation—a revisit with a decade of progress*. *Pharmaceutical Research*, 17(12), 1551–1557. <https://doi.org/10.1023/A:1007669417145>
8. Shentu, J., Cai, Z., & Yuan, X. (2020). *Development and validation of a rapid LC-MS/MS method for determination of Tamsulosin in human plasma and its pharmacokinetics*. *Biomedical Chromatography*, 34(10), e4699. <https://doi.org/10.1002/bmc.4699>
9. Taylor, P. J. (2005). *Matrix effects: The Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry*. *Clinical Biochemistry*, 38(4), 328–334. <https://doi.org/10.1016/j.clinbiochem.2004.11.007>
10. Zhou, Q., Qiu, X., & Jiang, J. (2020). *An improved LC-MS/MS approach for bioequivalence studies: Application to Tamsulosin quantification*. *Journal of Pharmaceutical and Biomedical Analysis*, 182, 113087. <https://doi.org/10.1016/j.jpba.2020.113087>